<ins id="p9lxx"></ins>
<thead id="p9lxx"><dl id="p9lxx"></dl></thead><ins id="p9lxx"><dl id="p9lxx"><listing id="p9lxx"></listing></dl></ins>
<ins id="p9lxx"></ins><del id="p9lxx"><noframes id="p9lxx"><thead id="p9lxx"></thead><var id="p9lxx"><span id="p9lxx"></span></var>
<i id="p9lxx"></i>
<var id="p9lxx"><span id="p9lxx"><progress id="p9lxx"></progress></span></var><ins id="p9lxx"></ins>
中國教育裝備采購網 【立即登錄】 【免費注冊】
資訊
專題
人物訪談
政府采購
產品庫
求購庫
企業庫
院校庫
案例·技術
會展信息
行業日歷
體采通
調制熒光成像系統 M系列IMAGING-PAM
  • 調制熒光成像系統 M系列IMAGING-PAM
  • 調制熒光成像系統 M系列IMAGING-PAM

    產品報價: 面議
    品  牌:WALZ
    產品型號:ZQ-WALZ001 (IMAGING-PAM )
    所在地區:上海
    (聯系我時,請說明是在教育裝備采購網上看到的,謝謝!)
    詳細說明

    M系列調制葉綠素熒光成像系統IMAGING-PAM

    簡便、快速、可靠、對樣品無干擾
    代表了調制熒光技術的未來發展方向!
    Schreiber教授因發明PAM系列調制葉綠素熒光儀而獲得首屆國際光合作用協會(ISPR)創新獎

    調制熒光成像系統 M系列IMAGING-PAM

    葉片被激光穿孔后NPQ信號的動態傳遞過程


    傳統的光纖型調制熒光儀(如PAM-2100、MINI-PAM等)只能測量葉片上一個點的光合活性。利用一個點的數據代表一個葉片,利用一個葉片代表一個植株,進而代表一個群體(如森林、大田作物等),這種方法的誤差是比較大的。

    從1980年代末期開始,科研人員就期望能通過成像型熒光儀來測量全葉片光合活性,并進行了不懈的嘗試,但受技術上的限制,所設計的儀器無法商品化或商品化了但得不到大家認可。其中一個很重要的原因就是能夠發出飽和脈沖水平強光的二極管(LED)尚未面世。要利用調制熒光技術測量全葉片水平的光合作用,首先要保證葉片上任何一點所接受到的光強必須是完全相同的。調制熒光技術要求光源必須能發出很強的飽和脈沖光。鹵素燈能發出很強的光,但其光場非常不均勻,根本不能用于成像!裝在一個平面上的LED陣列發出的光很均勻,但在2000年前,能發出超強光合有效輻射(PAR)的LED根本沒有面世!

    2000年,能發出超強PAR的藍光LED面世。2001年,全球最權威的調制熒光儀制造商德國WALZ公司設計制造了真正的全球第一臺多功能調制熒光成像系統IMAGING-PAMIMAGING-PAM采用超強發光LED作為光源,保證葉片表明受光均勻且光強足夠強;IMAGING-PAM采用CCD作為檢測器,能檢測葉片上每個像素的光合作用;IMAGING-PAM秉承了WALZ公司PAM系列熒光儀的一貫優點,功能強大,測量參數多,操作極其簡單,一面世就受到全球植物學家的青睞,迅速占領全球市場

    2005年,WALZ又推出了M系列IMAGING-PAM,一個主機可以連接不同的探頭(MICROSCOPY-,MICRO-,MINI-和MAXI-探頭),分別在130×150 um、3.5×4.5 mm、24×32 mm或10×13 cm的面積上測量熒光成像。現在,只需一個主機連接不同的探頭,即可滿足從單細胞到全葉片,從分子生物學到生態學研究的全面需要


    M系列IMAGING-PAM不同版本的比較


    MAXI-版

    MINI-版

    MICRO-版

    MICROSCOPY-版

           

    調制熒光成像系統 M系列IMAGING-PAM

    調制熒光成像系統 M系列IMAGING-PAM

    調制熒光成像系統 M系列IMAGING-PAM

    調制熒光成像系統 M系列IMAGING-PAM

           

    調制熒光成像系統 M系列IMAGING-PAM

    調制熒光成像系統 M系列IMAGING-PAM

    調制熒光成像系統 M系列IMAGING-PAM

    調制熒光成像系統 M系列IMAGING-PAM

           

    成像面積10×13 cm

    成像面積24×32 mm

    成像面積3.5×4.5 mm

    成像面積130×150 um

           

    放大1.5

    放大6

    放大45

    放大130-1300


    功 能
    * 一個主機連接不同的探頭可滿足從單細胞到全葉片、從分子生物學到生態學的不同需求
    * 全葉片光合作用分析(熒光成像),可測熒光誘導曲線并進行淬滅分析
    * 可測快速光響應曲線(120 s內完成,比光合放氧和氣體交換等技術快得多)
    * 葉片光合作用的橫向異質性檢測
    * 完全相同的條件下同時測量多個樣品(植物、地衣、苔蘚、微藻等)
    * 遺傳育種、突變株篩選的強大工具
    * 不同的測量面積,不同的分辨率
    * 可利用多孔板(如96孔板)做多個微藻樣品的同時成像
    * 脅迫損傷的早期檢測
    * 不連接顯微鏡即可測量綠色熒光蛋白(GFP)熒光
    * 可測量葉片吸光系數
    應用范圍

    * 環境科學
    * 水生生物學
    * 海洋與湖沼學
    * 生態毒理學
    * 園藝學
    * 農業科學
    * 林學
    * 環境科學
    * 水生生物學
    * 海洋與湖沼學
    * 生態毒理學
    * 園藝學
    * 農業科學
    * 林學

    調制熒光成像系統 M系列IMAGING-PAM
    DCMU在葉片中的滲透過程


    測量參數
    調制熒光成像系統 M系列IMAGING-PAM

    * 以上所有參數均可成像
    * 吸光系數Abs和新參數qL、Y(NPQ)和Y(NO)的成像是IMAGING-PAM獨有的
    * 生態毒理學研究中,選一個參考點,可以直接求出其它處理(如農藥)的受抑制程度Inh.

    調制熒光成像系統 M系列IMAGING-PAM

    各種熒光參數的成像是將0.0(黑色)至1.0(紫色)的數值轉換成顏色來顯示的。


     


    M系列IMAGING-PAM不同版本介紹

     

     

     

    MAXI-版
    大探頭,成像面積10×13 cm

    調制熒光成像系統的MAXI-探頭利用300 W的LED陣列,可以在10×13 cm的面積上提供均為的調制測量光、光化光和飽和脈沖光。該探頭的支架上配備特制護眼遮光罩,可以在保護眼睛的同時觀測到紅色熒光的變化。

    WALZ提供兩種數碼相機CCD供選擇。用戶若需要高清晰度,推薦選擇IMAG-MAX/K[2/3” chip, 1392×1040象素, 4象素組合(binning)技術]。標準應用可選擇IMAG-MAX/K2(1/2”, 640×480象素),可與IMAG-MAX/K2Z物鏡(F1.0/f=8-48mm)結合使用。

    調制熒光成像系統 M系列IMAGING-PAM



    調制熒光成像系統 M系列IMAGING-PAM

    調制熒光成像系統 M系列IMAGING-PAM

    調制熒光成像系統 M系列IMAGING-PAM

    調制熒光成像系統 M系列IMAGING-PAM

    測量盆栽植物

    測量離體葉片

    測量微藻樣品

    新增鏡頭可調放大倍數

           

    調制熒光成像系統 M系列IMAGING-PAM

    調制熒光成像系統 M系列IMAGING-PAM

    調制熒光成像系統 M系列IMAGING-PAM

    調制熒光成像系統 M系列IMAGING-PAM

    Y(NPQ)

    PS/50

    F

    96個微藻樣品成像



    MINI-版
    小探頭,成像面積24×32 mm

    調制熒光成像系統的MINI-探頭采用強大的Luxeon LED陣列,包括4組(每組3個)LED,均配有長波截止濾光片。配備8個紅光(650 nm)和8個近紅外(780 nm)LED,用于測量葉片吸光系數的成像。

    3種版本可選
    IMAG-MIN/B:藍光,450 nm,測量葉片等;
    IMAG-MIN/R:紅光,620 nm,測量藍藻
    IMAG-MIN/GFP:藍光,480 nm,測量綠色熒光蛋白(GFP)

    調制熒光成像系統 M系列IMAGING-PAM

    由于MINI-探頭的便攜式設計,使其特別適合野外應用。由于MINI-探頭的成像面積僅為MAXI-探頭的1/16,因而前者發出的最大光強更大,但耗電卻小得多。MINI-探頭可以安裝在光合儀GFS-3000的葉室3010-S上,同步測量全葉片氣體交換和熒光成像,并且其光源可由GFS-3000控制,達到真正的同步測量
    MINI-探頭采用1/3”數碼相機CCD(640×480象素)和F1.2/f=12mm物鏡。其設計目的為測量固定距離下的熒光成像。

    調制熒光成像系統 M系列IMAGING-PAM

    調制熒光成像系統 M系列IMAGING-PAM

    調制熒光成像系統 M系列IMAGING-PAM

    調制熒光成像系統 M系列IMAGING-PAM

    與光合儀GFS-3000連用

    長時間測量可裝在三角架上

    Fm

    qN


    Micro-版
    微探頭,成像面積3.5×4.5 mm

    調制熒光成像系統的MICRO-探頭是一個極便攜的探頭,采用整合式Cosmicar-Pentax CCTV物鏡(F1.4/f=16mm),直接安裝在數碼CCD(1/3” chip, 640×480像素)上。

    MICRO-探頭只配備一個Luxeon LED(藍光,450 nm)和一個特制雙色分光鏡,類似于落射熒光顯微鏡。

    盡管成像面積只有3.5×4.5 mm,但45倍的放大率卻允許對葉片熒光成像的異質性分析達到支脈(minor veins)級。同時還可提供一個特制版本用于測量GFP的成像。

    調制熒光成像系統 M系列IMAGING-PAM


    MICRO-探頭還可安裝在標準版IMAGING-PAM(2001年設計)主機上。該探頭提供X-Y軸可調的樣品臺。其設計目的為測量固定距離下的熒光成像。

    調制熒光成像系統 M系列IMAGING-PAM

    調制熒光成像系統 M系列IMAGING-PAM

    調制熒光成像系統 M系列IMAGING-PAM

    Fo

    GFP成像

    微探頭直接安裝在CCD上


    Microscopy-版
    顯微探頭,成像面積130×150 um

    必須與特制落射熒光顯微鏡(Hund或Zeiss)結合使用,該顯微鏡可以提供激發光并檢測熒光

    IMAG-MAX/K(數碼相機CCD)[1392×1040象素,4象素組合(binning)技術]可以提供高靈敏度。

    探頭標準配置是一個超強Luxeon LED(450-480 nm),用于提供測量光、光化光和飽和脈沖。目前已可提供RGB探頭(紅-綠-藍-白LED光源),它采用了PHYTO-PAM技術,可以顯微鏡下自動對藍藻、綠藻、硅/甲藻、紅藻進行分類并測量光合作用。

    調制熒光成像系統 M系列IMAGING-PAM


    調制熒光成像系統 M系列IMAGING-PAM

    調制熒光成像系統 M系列IMAGING-PAM

    分類,紅色為硅藻,綠色為絲狀綠藻

    光合,Fv/Fm活性,可區分細胞不同部位的活性


    部分文獻
    1. Abrego D, Ulstrup KE, Willis BL, van Oppen MJH: Species–specific interactions between algal endosymbionts and coral hosts define their bleaching response to heat and light stress Proc. R. Soc. Lond. B 2008;275:2273-2282.
    2. Abreu ME, Munné-Bosch S: Hyponastic leaf growth decreases the photoprotective demand, prevents damage to photosystem II and delays leaf senescence in Salvia broussonetii plants. Physiologia Plantarum 2008;134:369-379.
    3. Abreu ME, Munné-Bosch S: Salicylic acid may be involved in the regulation of drought-induced leaf senescence in perennials: A case study in field-grown Salvia officinalis L. plants Environmental and Experimental Botany 2008:in press.
    4. Ainsworth TD, Hoegh-Guldberg O, Heron SF, Skirving WJ, Leggat W: Early cellular changes are indicators of pre-bleaching thermal stress in the coral host Journal of Experimental Marine Biology and Ecology 2008;364:63-71.
    5. Ali NA, Juneau P, Didur O, Perreault F, Popovic R: Effect of dichromate on photosystem II activity in xanthophylldeficient mutants of Chlamydomonas reinhardtii. Photosynthesis Research 2008;95:45-53.
    6. Calatayud Á, Gorbe E, Roca D, Martínez PF: Effect of two nutrient solution temperatures on nitrate uptake, nitrate reductase activity, NH4+ concentration and chlorophyll a fluorescence in rose plants Environmental and Experimental Botany 2008:in press.
    7. Ehlert B, Hincha DK: Chlorophyll fluorescence imaging accurately quantifies freezing damage and cold acclimation responses in Arabidopsis leaves. Plant Methods 2008;4:1-7.
    8. Escher BI, Bramaz N, Mueller JF, Quayle P, Rutishauser S, Vermeirssen ELM: Toxic equivalent concentrations (TEQs) for baseline toxicity and specific modes of action as a tool to improve interpretation of ecotoxicity testing of environmental samples. Journal of Environmental Monitoring 2008;10:612-621.
    9. Escher BI, Bramaz N, Quayle P, Rutishauser S, Vermeirssen ELM: Monitoring of the ecotoxicological hazard potential by polar organic micropollutants in sewage treatment plants and surface waters using a mode-of-action based test battery. Journal of Environmental Monitoring 2008;10:622-631.
    10. Garbary DJ, Miller AG, Scrosati R, Kim K-Y, Schofield WB: Distribution and salinity tolerance of intertidal mosses from Nova Scotian salt marshes The Bryologist 2008;111:282-191.
    11. Guidi L, Degl’Innocenti E: Ozone effects on high light-induced photoinhibition in Phaseolus vulgaris Plant Science 2008;174:590-596.
    12. Hall-Spencer JM, Rodolfo-Metalpa R, Martin S, Ransome E, Fine M, Turner SM, Rowley SJ, Tedesco D, Buia M-C: Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 2008;454:96-99.
    13. Hideg É: A comparative study of fluorescent singlet oxygen probes in plant leaves Central European Journal of Biology 2008;3:272-284.
    14. Horst RJ, Engelsdorf T, Sonnewald U, Voll LM: Infection of maize leaves with Ustilago maydis prevents establishment of C4 photosynthesis. Journal of Plant Physiology 2008;165:19-28.
    15. Krupenina NA, Bulychev AA, Roelfsema MRG, Schreiber U: Action potential in Chara cells intensifies spatial patterns of photosynthetic electron flow and non-photochemical quenching in parallel with inhibition of pH banding. Photochemical & Photobiological Sciences 2008;7:681-688.
    16. Kuckenberg J, Tartachnyk I, Noga G: Evaluation of fluorescence and remission techniques for monitoring changes in peel chlorophyll and internal fruit characteristics in sunlit and shaded sides of apple fruit during shelf-life Postharvest Biology and Technology 2008;48:231-241.
    17. Lange PR, Geserick C, Tischendorf G, Zrenner R: Functions of Chloroplastic Adenylate Kinases in Arabidopsis. Plant Physiology 2008;146:492-504.
    18. Lehr N-A, Schrey SD, Hampp R, Tarkka MT: Root inoculation with a forest soil streptomycete leads to locally and systemically increased resistance against phytopathogens in Norway spruce. New Phytologist 2008;177:965-976.
    19. Liu N, Lin Z-F, Lin G-Z, Peng C-L, Pan X-P, Chen S-W: Spectral reflectance parameters and pigment functions during leaf ontogenesis in six subtropical landscape plants. Plant Growth Regulation 2008:in press.
    20. Lu Y, Savage LJ, Ajjawi I, Imre KM, Yoder DW, Benning C, DellaPenna D, Ohlrogge JB, Osteryoung KW, Weber AP, Wilkerson CG, Last RL: New Connections across Pathways and Cellular Processes: Industrialized Mutant Screening Reveals Novel Associations between Diverse Phenotypes in Arabidopsis. Plant Physiology 2008;146:1482-1500.
    21. Magnusson M, Heimann K, Negri AP: Comparative effects of herbicides on photosynthesis and growth of tropical estuarine microalgae Marine Pollution Bulletin 2008;56:1545-1552.
    22. Massacci A, Nabiev SM, Pietrosanti L, Nematov SK, Chernikova TN, Leipner KTaJ: Response of the photosynthetic apparatus of cotton (Gossypium hirsutum) to the onset of drought stress under field conditions studied by gas-exchange analysis and chlorophyll fluorescence imaging Plant Physiology and Biochemistry 2008;46:189-195.
    23. Middlebrook R, Hoegh-Guldberg O, Leggat W: The effect of thermal history on the susceptibility of reef-building corals to thermal stress. Journal of Experimental Biology 2008;211:1050-1056.
    24. Muller R, Schreiber U, Escher BI, Quayle P, Nash SMB, Mueller JF: Rapid exposure assessment of PSII herbicides in surface water using a novel chlorophyll a fluorescence imaging assay Science of The Total Environment 2008;401:1-3.
    25. Nicolaisen K, Moslavac S, Samborski A, Valdebenito M, Hantke K, Maldener I, Muro-Pastor AM, Flores E, Schleiff E: Alr0397 is an outer membrane transporter for the siderophore schizokinen in Anabaena sp. strain PCC 7120. Journal of Bacteriology 2008:in press.
    26. Pieruschka R, Chavarria-Krauser A, Cloos K, Scharr H, Schurr U, Jahnke S: Photosynthesis can be enhanced by lateral CO2 diffusion inside leaves over distances of several millimeters. New Phytologist 2008;178:335-347.
    27. Rentzou A, Psaras GK: Green plastids, maximal PSII photochemical efficiency and starch content of inner stem tissues of three Mediterranean woody species during the year Flora 2008;203:350-357.
    28. Roff G, Kvennefors ECE, Ulstrup KE, Fine M, Hoegh-Guldberg O: Coral disease physiology: the impact of Acroporid white syndrome on Symbiodinium Coral Reefs 2008;27:373-377.
    29. Roff G, Ulstrup KE, Fine M, Ralph PJ, Hoegh-Guldberg O: Spatial heterogeneity of photosynthetic activity within diseased corals from the Great Barrier Reef. Journal of Phycology 2008;44:526-538.
    30. Shao L, Shu Z, Peng C-L, Lin Z-F, Yang C-W, Gu Q: Enhanced sensitivity of Arabidopsis anthocyanin mutants to photooxidation : a study with fluorescence imaging. Functional Plant Biology 2008;35:714-724.
    31. Shaw CM, Lam PKS, Mueller JF: Photosystem II herbicide pollution in Hong Kong and its potential photosynthetic effects on corals Marine Pollution Bulletin 2008;57:473-478.
    32. 竇新永, 吳國江, 黃紅英, 侯雨佳, 顧群, 彭長連: 麻楓樹幼苗對干旱脅迫的響應. 應用生態學報 2008;19:1425-1430.
    33. 李蕓瑛, 竇新永, 彭長連: 三種瀕危木蘭植物幼樹光合特性對高溫的響應. 生態學報 2008;28:1-9.
    34. 馬守臣, 徐炳成, 李鳳民, 黃占斌: 冬小麥(Triticum aestivum)分蘗冗余生態學意義以及減少冗余對水分利用效率的影響. 生態學報 2008;28:321-326.
    35. 施征, 史勝青, 肖文發, 齊力旺: 脫水脅迫對梭梭和胡楊苗葉綠素熒光特性的影響. 林業科學研究 2008;21:566-570.
    36. Guidi L, Mori S, DeglInnocenti E, Pecchiab S: Effects of ozone exposure or fungal pathogen on white lupin leaves as determined by imaging of chlorophyll a fluorescence Plant Physiology and Biochemistry 2007:in press.
    37. Hennig A, Bonfig K, Roitsch T, Warzecha H: Expression of the recombinant bacterial outer surface protein A in tobacco chloroplasts leads to thylakoid localization and loss of photosynthesis. FEBS Journal 2007;274:5749-5758.
    38. Hideg E, Kos PB, Vass I: Photosystem II damage induced by chemically generated singlet oxygen in tobacco leaves. Physiologia Plantarum 2007;131:33-40.
    39. Hideg É, Schreiber U: Parallel assessment of ROS formation and photosynthesis in leaves by fluorescence imaging. Photosynthesis Research 2007;92:103-108.
    40. Lehr NA, Schrey SD, Bauer R, Hampp R, Tarkka MT: Suppression of plant defence response by a mycorrhiza helper bacterium. New Phytologist 2007;174:892-903.
    41. Lenk S, Chaerle L, Pfündel EE, Langsdorf G, Hagenbeek D, Lichtenthaler HK, Van Der Straeten D, Buschmann C: Multispectral fluorescence and reflectance imaging at the leaf level and its possible applications. Journal of Experimental Botany 2007;58:807-814.
    42. Orth T, Reumann S, Zhang X, Fan J, Wenzel D, Quan S, Hu J: The PEROXIN11 protein family controls peroxisome proliferation in Arabidopsis. The Plant Cell 2007;19:333-350.
    43. Schreiber U, Quayle P, Schmidt S, Escher BI, Mueller JF: Methodology and evaluation of a highly sensitive algae toxicity test based on multiwell chlorophyll fluorescence imaging. Biosensors and Bioelectronics 2007:in press.
    44. Solymosi K, Vitányi B, Hideg É, Böddi B: Etiolation symptoms in Sunflower (Helianthus annuus) cotyledons partially covered by the pericarp of the Achene. Annals of Botany 2007;99:857-867.
    45. Ulstrup KE, Kühl M, Bourne DG: Zooxanthellae harvested by ciliates associated with brown band syndrome of corals remain photosynthetically competent. Applied and Environmental Microbiology 2007;73:1968-1975.
    46. 鄧培雁, 劉威, 韓博平: 寶山堇菜(Viola baoshanensis)鎘脅迫下的光合作用  生態學報 2007;27:1858-1862.
    47. 鄧培雁, 劉威, 韓博平, 韓志國: 寶山堇菜(Viola baoshanensis)、紫花地丁(V. yedoensis)光合異質性比較 生態學報 2007;27:2983-2989.
    48. 鄧培雁, 劉威, 韓志國: 砷脅迫下蜈蚣草光合作用的變化. 生態環境 2007;16:775-778.
    49. 高海波, 沈應柏: 用葉綠素熒光研究植物傷害信息的系統性傳遞. 湖北農業科學 2007;46:771-773.
    50. Aldea M, Hamilton JG, Resti JP, Zangerl AR, Berenbaum MR, Frank TD, Delucia EH: Comparison of photosynthetic damage from arthropod herbivory and pathogen infection in understory hardwood saplings. Oecologia 2006;149:221-232.
    51. Bonfig KB, Schreiber U, Gabler A, Roitsch T, Berger S: Infection with virulent and avirulent P. syringae strains differentially affects photosynthesis and sink metabolism in Arabidopsis leaves Planta 2006;225:1-12.
    52. Dima E, Manetas Y, Psaras GK: Chlorophyll distribution pattern in inner stem tissues: evidence from epifluorescence microscopy and reflectance measurements in 20 woody species Trees 2006;20:515-521.
    53. Escher BI, Quayle P, Muller R, Schreiber U, Mueller JF: Passive sampling of herbicides combined with effect analysis in algae using a novel high-throughput phytotoxicity assay (Maxi-Imaging-PAM). Journal of Environmental Monitoring 2006;8:456-464.
    54. Heddad M, Norén H, Reiser V, Dunaeva M, Andersson B, Adamska I: Differential expression and localization of early light-induced proteins in Arabidopsis thaliana. Plant Physiology 2006:in press.
    55. Hölzl G, Witt S, Kelly AA, Zähringer U, Warnecke D, Dörmann P, Heinz E: Functional differences between galactolipids and glucolipids revealed in photosynthesis of higher plants. Proc. Natl. Acad. Sci. USA 2006;103:7512-7517.
    56. Ivanov AG, Hendrickson L, Krol M, Selstam E, Öquist G, Hurry V, Huner NPA: Digalactosyl-diacylglycerol deficiency impairs the capacity for photosynthetic intersystem electron transport and state transitions in Arabidopsis thaliana due to photosystem I acceptor-side limitations. Plant Cell and Physiology 2006;47:1146-1157.
    57. Kaiser H, Grams TEE: Rapid hydropassive opening and subsequent active stomatal closure follow heat-induced electrical signals in Mimosa pudica. Journal of Experimental Botany 2006;57:2087-2092.
    58. Kuster A, Altenburger R: Development and validation of a new fluorescence-based bioassay for aquatic macrophyte species. Chemosphere 2006;67:194-201.
    59. Lohmann A, Schottler MA, Brehelin C, Kessler F, Bock R, Cahoon EB, Dormann P: Deficiency in phylloquinone (Vitamin K1) methylation affects prenyl quinone distribution, photosystem I abundance, and anthocyanin accumulation in the Arabidopsis AtmenG mutant. Journal of Biological Chemistry 2006;281:40461-40472.
    60. Nagel KA, Schurr U, Walter A: Dynamics of root growth stimulation in Nicotiana tabacum in increasing light intensity. Plant Cell and Environment 2006;29:1936-1945.
    61. Petit A-N, Vaillant N, Boulay M, Clément C, Fontaine F: Alteration of photosynthesis in grapevines affected by esca. Phytopathology 2006;96:1060-1066.
    62. Pieruschka R, Schurr U, Jensen M, Wolff WF, Jahnke S: Lateral diffusion of CO2 from shaded to illuminated leaf parts affects photosynthesis inside homobaric leaves. New Phytologist 2006;169:779-788.
    63. Swarbrick PJ, Schulze-Lefert P, Scholes JD: Metabolic consequences of susceptibility and resistance (race-specific and broad-spectrum) in barley leaves challenged with powdery mildew. Plant Cell and Environment 2006;29:1061-1076.
    64. Vopel K, Hawes I: Photosynthetic performance of benthic microbial mats in Lake Hoare, Antarctica. Limnology and Oceanography 2006;51:1801-1812.
    65. 蔡馬, 賀立紅, 梁紅: 2種銀杏葉片葉綠素熒光特性的比較. 安徽農業科學 2006;34:3322-3324.
    66. 鞏擎柱, 呂金印, 徐柄成, 李鳳民, 張海波: 水分脅迫和種植方式對小麥葉綠素熒光參數及水分利用效率的影響. 西北農林科技大學學報 2006;34:83-87.
    67. 郭學民, 王貴禧, 高榮孚, 梁麗松: 果實表皮毛的掃描電鏡觀察及其對果實表面熒光特性的影響. 內蒙古農業大學學報 2006;27:43-47.
    68. 賀立紅, 賀立靜, 顧群, 梁紅: 銀杏同一葉片不同部位葉綠素熒光特性的研究. 北方園藝 2006:27-29.
    69. 賀立紅, 賀立靜, 梁紅: 銀杏不同品種葉綠素熒光參數的比較. 華南農業大學學報 2006;27:43-46.
    70. Aldea M, Hamilton JG, Resti JP, Zangerl AR, Berenbaum MR, Delucia EH: Indirect effects of insect herbivory on leaf gas exchange in soybean. Plant Cell and Environment 2005;28:402-411.
    71. Baek M-H, Kim J-H, Chung BY, Kim J-S, Lee IS: Alleviation of salt stress by low dose g-irradiation in rice. Biologia Plantarum 2005;49:273-276.
    72. Borisjuk L, Nguyen TH, Neuberger T, Rutten T, Tschiersch H, Claus B, Feussner I, Webb AG, Jakob P, Weber H, Wobus U, Rolletschek H: Gradients of lipid storage, photosynthesis and plastid differentiation in developing soybean seeds. New Phytologist 2005;163:761-776.
    73. Gog L, Berenbaum MR, DeLucia EH, Zangerl AR: Autotoxic effects of essential oils on photosynthesis in parsley, parsnip, and rough lemon. Chemoecology 2005;15:115-119.
    74. Kühl M, Chen M, Ralph PJ, Schreiber U, Larkum AWD: A niche for cyanobacteria containing chlorophyll d. Nature 2005;433:820.
    75. Lautner S, Grams TEE, Matyssek R, Fromm J: Characteristics of electrical signals in poplar and responses in photosynthesis. Plant Physiology 2005;138:2200-2209.
    76. Manetas Y, Pfanz H: Spatial heterogeneity of light penetration through periderm and lenticels and concomitant patchy acclimation of corticular photosynthesis Trees 2005;19:409-414.
    77. Marjanovic Z, Uwe N, Hampp R: Mycorrhiza formation enhances adaptive response of hybrid poplar to drought Annals of the New York Academy of Sciences 2005;1048:496-499.
    78. Podola B, Melkonian M: Selective real-time herbicide monitoring by an array chip biosensor employing diverse microalgae. Journal of Applied Phycology 2005;17:261-271.
    79. Ralph PJ, Macinnis-Ng CMO, Frankart C: Fluorescence imaging application: effect of leaf age on seagrass photokinetics. Aquatic Botany 2005;81:69-84.
    80. Ralph PJ, Schreiber U, Gademann R, Kühl M, Larkum AWD: Coral photobiology studied with a new imaging pulse amplitude modulated fluorometer. Journal of Phycology 2005;41:335-342.
    81. Berger S, Papadopoulos M, Schreiber U, Kaiser W, Roitsch T: Complex regulation of gene expression, photosynthesis and sugar levels by pathogen infection in tomato. Physiologia Plantarum 2004;122:419-428.
    82. Hill R, Larkum AWD, Frankart C, Kühl M, Ralph PJ: Loss of functional Photosystem II reaction centres in zooxanthellae of corals exposed to bleaching conditions: using fluorescence rise kinetics. Photosynthesis Research 2004;82:59-72.
    83. Hill R, Schreiber U, Gademann R, Larkum AWD, Kühl M, Ralph PJ: Spatial heterogeneity of photosynthesis and the effect of temperature-induced bleaching conditions in three species of corals. Marine Biology 2004;144:633-640.
    84. Podola B, Nowack ECM, Melkonian M: The use of multiple-strain algal sensor chips for the detection and identification of volatile organic compounds. Biosensors and Bioelectronics 2004;19:1253-1260.
    85. Koziolek C, Grams TEE, Schreiber U, Matyssek R, Fromm J: Transient knockout of photosynthesis mediated by electrical signals. New Phytologist 2003;161:715-722.
    86. Schreiber U, Walz H, Kolbowski J: Propagation of spatial variations of chlorophyll fluorescence parameters in dandelion leaves induced by spot laser heating. PAM News 2003.

    訪客留言
    姓名
    電話
    單位
    信箱
    留言內容
    驗證碼
    同類產品推薦
    狠狠操狠狠日